A Finite Volume Solver for Radiation
Hydrodynamicsin the Non Equilibrium
Diffusion Limit
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Abstract We derive an Implicit Explicit finite volume scheme for thengouta-
tion of radiation hydrodynamics. The convective part isdiad through a classical
upwind method while the reactive and diffusive parts areréiszed thanks to a
centered scheme. These results are compared to semiiasalytions obtained by
Lowrie and Edwards [10].
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1 Introduction

Radiation hydrodynamics models are of interest for manyliegions e.g. astro-

physics, inertial confinement fusion (ICF) and other flowthwiery high temper-
atures. One of the major difficulties for these multi-phgsizoblems is the pres-
ence of multiple time scales. From the numerical point ofwinis leads to build
implicit-explicit schemes with respect to time. The imgligart is here to handle
small time scales while the explicit one takes care of latigee scales. In our con-
text, the small time scales result from the radiation transpart (diffusion) while

larger time scales come from purely hydrodynamical phemanfentropy and pres-
sure waves). Our strategy consists in relying on classieldlcentered Finite \Vol-
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ume schemes based on approximate Riemann solver (namedySEhemes see
Ghidaglia [5]) for the hydrodynamics part and on an impliiitite Volume scheme
for the radiative one.

This article is a first step towards the derivation of a mortterial solver, that is
studying flows with two or more different materials. For exdenin the ICF ap-

plications, we have at least two materials in presence, alrt@bld) and a highly

compressed gas (a mixture of Deuterium and Tritium). Theimaterial version of

the scheme (Chauveheid [3]), relies on a generalizatioheftethod of Braeunig
et al. [1]. The latter method computes sharp interfaces betweamiscible mate-

rials whose computation uses directional splitting. Hendgis paper, although we
solely address the case of one material, we shall use Gartesshes.

The governing equations, in non dimensional form (Lowriel &dwards [10],

Lowrie and Morel [9]), read in B as:

ap _
S¢ T (pw) =0, 1
9(pu) S \1d) =
o +D~(pu®u+<p+3%3)|d)—0’ (2)
d(gtE) +0-((PE+p)u)=—-P <0(T4—@)+U'D(§r> v (3)
%JFD.(@%UH%D.U:D.(KD@%HU(T“—@%), (4)

where we denote bp the densityu the velocity field,p the hydrodynamic pres-
sure, related to the densify and the internal energg by an equation of state :
EOS(p, p,€) = 0. The hydrodynamic specific energy= e+ 3 u||? is the sum of
the specific internal energyand the kinetic energyl, is the material temperature.
The radiative energy is denoted By and we define the radiation temperature by
T* = &. Finally, 2 is a non dimensional number ([10], [9]). This system is non
conservative but adding (3) ar#y (4) we readily obtain the total energy conserva-
tion law:

HoBLZof) 4, ((pE+ p+4%f) u) — 20 (kO&).  (5)
Then, introducing the radiative entropy (as done in R]= T,2, we can rewrite (4)
as
S 3 4
W‘FD'(S’U)_E[D'(KD&)‘FO—(T _éar)} (6)

The system (1), (2), (5) and (6) is conservative as far asesion terms are con-
cerned. Equation (6) is a non linear heat equation for thiatigd temperaturd;.
This variable is therefore diffused and the non conserggtioduct appearing in the
right hand side of this equation should not induce non umagss of solutions.
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2 Numerical scheme

We use an operator splitting which consists in solving fingt keft-hand side of
(1), (2), (5) and (6) by means of an upwind explicit finite volet scheme. Then,
the diffusion-reaction part is discretized thanks to a errd implicit finite vol-
ume scheme. This kind of technique is often referred to as{Mtethod (for Im-
plicit/Explicit), see for example [7], [8].

We consider a regular cartesian grid and split also the sgiffeeential operators,
that is to say we solve successively #aderivative terms, thg-derivative terms and
thez-derivative term.

Therefore, and without loss of generality, we deal only with schemes, corre-
sponding to what is done direction by direction. From nowwea callx the generic
direction that we are looking at.

2.1 Cell centered upwind Finite Volume scheme for the conventi
operator

We denote by = (p, pu, pE + Pé;, S ) the conservative variables for the convec-
tive part of the system (1), (2), (5) and (6), andv) the flux matrix such that:

F(v)-n=(p(u-n),pu(u-n)+(p+ Foé/3)n,S(u-nj), (7)

is the normal flux in the direction € S92, d being the physical space dimension.
With these notations, the left-hand side of equations Z)-X%)-(6) reads:

ov

— +0U-F(v)=0.

o T F(v)=0 ®)
The integration of (8) over a control volurk@; x = X, Xi+1] x [Yj,Yj+1] X [z, Zes1]
keeping only the terms corresponding to the derivation englnericx-direction,
leads to a system of ordinary differential equations:

dVKLJZk 1

o (A2 Kk @Vig ko Vijk) — A—1/2, ) k@(Vij ks Vie1,jk)) =0, (9)
dt |K|,J,k|

where@(vi11 j k, Vi j k) denotes the numerical flux at the interface between volumes
Ki.jk andKi; 1 j k- Air1/2,jk is the measure of the edge locatedia > = %

The Characteristic Flux Finite Volume (CFFV) scheme. The CFFV scheme [4]
consists in choosing, for the numerical flux in (9), the faliog value:

F(v)+F(w)
2

~n—%(u,v,n)w-n. (20)

(p(v7 W7 n) = 2
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Here,n = g, for the generix-direction.% (u,Vv,n) is the sign matrix of the jacobian

aF(g )n , In the sense that it has the same eigenvectors as, andats/alges are the

signs of those ofai Namely, whe l§> n—— readsL(diag(A;))R (which is the
case for hyperbohc problems) with the eigenvalueRR right eigenvectors, and
left eigenvectors such thaR = Id, we have? (u,v,n) = L(diag(sign(Ai)))R.

The boundary conditions use the normal flux method, we reffg]t
Eigenelements. The jacobian matrix of the normal flux (7) is found to be edoal

0 n 0 0
OF(v)-n Kn—u(u-n) uen—kn®u+(u-n)ld  kn § 20T (1-3K)n
Tov | (K= (H+22%)uen (H+ *22%)n—k(u-nju u-n(k+1) §20T(1-3K)u-n
f%u n T,fn 0 u-n

Its eigenvalues are as follows:

)\1(V,n) =Uu-Nn—_Cs,
AZ(V7n) = :)‘d+2<van) =u-n, (11)
Ad+3(V,n) =uU-n+cCs.
with k = piT (%)p, = (g—g) s being the material entropyj = E+ 5, K =
¢ +k(||u|>—H) andc2 = cz+320
The right eigenvectors assomated to these eigenvaludsectken equal to:

490 T3
Or_CSu n’p)

ri(v,n) = (L, u—csn,H +
ra-1(vn) = (LuH-$%.0),

rat2(W%Wn) = (ZoTr, yoTrlL PoT;(H—3c?), - 2c?), (12)
fa:a(vn) = (Lu-+csn,H+420% 1 cuon, ™),

ra(v,n) = (0,n3,u-ny), - ,rg(v,n) = (0,ng,u-ng).

whereny ---ny is an orthonormal basis of the hyperplane orthogonal to
The dual basis is then:

f1(v;n) = z—ig(K—kcsu n, —ku —csn, K, 8 ZoT, (1 - 3K)),
éd+1<v n):Cl(é( —||U||2 74901—!‘))’
la+2(V,n) = ngZCZ (T3K, kTBU kT2, —pc? — %yok&)7 (13)

lg13(v,n) = (K Csu-n, —ku+csn k, 8 20T, (1—3K)),
lo(v,n) = (—u-nZL,nZL,O,O),m Lg(v,n) = (—u-ng,n3,0,0).

Timediscretization and stability condition. We use the explicit Euler's scheme to
discretize the time derivative in (9) and then the Couranti@@on for the linearized
scheme reads:
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A" <CFL K, (14)

Ak
max A )]s
MR K, j k]
whereA j ¢ is eitherAx; Ay, Ay; Az or Az Ax depending on the direction we

solve.

2.2 Implicit centered finite volume scheme for the diffusion
equation

The diffusion part consists in the following system:

op
=0 (15)
d(pu) _
5 =0 (16)
4 (gtE) — DT &), (17)
%:D-(KD§)+G(T4—£)~ (18)

Since (18) is a heat equation, if we want to use reasonab&giep (governed by
the Courant Friedrichs Lewy condition (14)), we have to mage of an implicit
time discretization.

Writing E = C, T +||u||?/2, and using (15) and (16), we can show that (17) reduces
to an ODE for the temperatuiie

oT
PG/ =—P00(T* &), (19)

The scheme then reads:

-I—_n+l _Tn 14 1
n | | n n+ n+
PGy =~ 00l (TM)* = &) (20)
o+l entl o+l entl
éf’n+l é"n Kn ri+l” “rii 7Kn r,i “ri—1
i i - i+1/2  AXiy1 i—1/2 AX

_ AaN(mn+L4 _ entl

2 1,1
Ko K K
It can be shown by a motonicity argument that this system hascue solution. It
is then solved by the Newton method, mainly because of thénear terms, and
the GMRES algorithm ([11]) at each Newton iteration to sdhelinear system.
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3 Numerical results

In this section, we present numerical simulations of ragkaghock solutions. These
results are compared to semi-analytic solutions obtainlowing the method de-
scribed in [10].

We initialize a Riemann problem setting the left-state ésuipt 0) topg =1, Trg =
1,To=1,up = .#, for a given.# (some different values are chosen for the tests),
and the right-state (subscript 1) is obtained by solvingsthxealled “overall jump
conditions” ([10]), and taking material and radiative tergtures equal to each
other:

Pouo = PyUy (22)
2 Tr40 2 Tr41
Polp + p0+3”0?’ = piug+ p1+<9”o?’ (23)
4 4
Uo(PoEo + Po + 3 PoT o) = w(prEr+ pr+ 3 PoTh) (24)

Here,k = 1,0 = 10° and %%y = 104.

We take perfect gas equation of state- %, with y=5/3.

Figure 1 shows a continuous solution computed over 128. @dlsitions of figures
2 to 4 undergo discontinuities. For these simulations, a fimesh is used to capture
the solutions.

Numerical and theoretical results are in good agreemerg.cbnservative formu-
lation chosen in (6) seems to be relevant with regard to tpasgcular physical
solutions.
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rho exact
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Fig. 1 Solution for density, temperature and radiative temperature#£ = 1.05. Comparison with
semi-analytic solutions. Number of cells: 128
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Fig. 2 Solution for density, temperature and radiative temperatureZ£ = 1.2. Comparison with

semi-analytic solutions. Number of cells: 256
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Fig. 3 Solution for density, temperature and radiative temperatureZ£ = 1.4. Comparison with

semi-analytic solutions. Number of cells: 512
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Fig. 4 Solution for density, temperature and radiative temperatureA = 3. Comparison with

semi-analytic solutions. Number of cells: 512
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4 Conclusion

As said in the introduction, this work is a first step towarus derivation of a multi

material D solver for multi material radiative hydrodynamics. In theper we have
presented our method for the single material case and sti@toit physically rele-
vant non trivial solutions, our solver behaves well. Thesagton for multi material

flows is in progress (Chauveheid [3]). The method presentee Was designed in
order to make this extension as simple as possible. In factytremains to extend
the so-called condensate techniques of Braeenig. [1] to radiative flows.
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