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Abstract We derive an Implicit Explicit finite volume scheme for the computa-
tion of radiation hydrodynamics. The convective part is handled through a classical
upwind method while the reactive and diffusive parts are discretized thanks to a
centered scheme. These results are compared to semi-analytic solutions obtained by
Lowrie and Edwards [10].
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1 Introduction

Radiation hydrodynamics models are of interest for many applicationse.g. astro-
physics, inertial confinement fusion (ICF) and other flows with very high temper-
atures. One of the major difficulties for these multi-physics problems is the pres-
ence of multiple time scales. From the numerical point of view, this leads to build
implicit-explicit schemes with respect to time. The implicit part is here to handle
small time scales while the explicit one takes care of largertime scales. In our con-
text, the small time scales result from the radiation transport part (diffusion) while
larger time scales come from purely hydrodynamical phenomena (entropy and pres-
sure waves). Our strategy consists in relying on classical cell centered Finite Vol-
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ume schemes based on approximate Riemann solver (namely Flux Schemes see
Ghidaglia [5]) for the hydrodynamics part and on an implicitFinite Volume scheme
for the radiative one.
This article is a first step towards the derivation of a multi-material solver, that is
studying flows with two or more different materials. For example in the ICF ap-
plications, we have at least two materials in presence, a metal (Gold) and a highly
compressed gas (a mixture of Deuterium and Tritium). The multi material version of
the scheme (Chauveheid [3]), relies on a generalization of the method of Braeunig
et al. [1]. The latter method computes sharp interfaces between non miscible mate-
rials whose computation uses directional splitting. Hencein this paper, although we
solely address the case of one material, we shall use cartesian meshes.
The governing equations, in non dimensional form (Lowrie and Edwards [10],
Lowrie and Morel [9]), read in 3D as:

∂ρ
∂ t

+∇ · (ρu) = 0, (1)

∂ (ρu)
∂ t

+∇ ·

(

ρu⊗u+

(

p+P0
Er

3

)

Id

)

= 0, (2)

∂ (ρE)
∂ t

+∇ · ((ρE + p)u) =−P0

(

σ(T 4−Er)+u ·∇
Er

3

)

, (3)

∂Er

∂ t
+∇ · (Eru)+

Er

3
∇ ·u = ∇ · (κ∇Er)+σ(T 4−Er) , (4)

where we denote byρ the density,u the velocity field,p the hydrodynamic pres-
sure, related to the densityρ and the internal energye by an equation of state :
EOS(p,ρ ,e) = 0. The hydrodynamic specific energyE = e+ 1

2‖u‖2 is the sum of
the specific internal energye and the kinetic energy,T is the material temperature.
The radiative energy is denoted byEr and we define the radiation temperature by
T 4

r = Er. Finally, P0 is a non dimensional number ([10], [9]). This system is non
conservative but adding (3) andP0 (4) we readily obtain the total energy conserva-
tion law:

∂ (ρE +P0Er)

∂ t
+∇ ·

((

ρE + p+4P0
Er

3

)

u
)

= P0∇ · (κ∇Er) . (5)

Then, introducing the radiative entropy (as done in [2])Sr ≡ T 3
r , we can rewrite (4)

as
∂Sr

∂ t
+∇ · (Sru) =

3
4Tr

[

∇ · (κ∇Er)+σ(T 4−Er)
]

. (6)

The system (1), (2), (5) and (6) is conservative as far as convection terms are con-
cerned. Equation (6) is a non linear heat equation for the radiative temperatureTr.
This variable is therefore diffused and the non conservative product appearing in the
right hand side of this equation should not induce non uniqueness of solutions.
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2 Numerical scheme

We use an operator splitting which consists in solving first the left-hand side of
(1), (2), (5) and (6) by means of an upwind explicit finite volume scheme. Then,
the diffusion-reaction part is discretized thanks to a centered implicit finite vol-
ume scheme. This kind of technique is often referred to as IMEX method (for Im-
plicit/Explicit), see for example [7], [8].
We consider a regular cartesian grid and split also the spacedifferential operators,
that is to say we solve successively thex-derivative terms, they-derivative terms and
thez-derivative term.
Therefore, and without loss of generality, we deal only with1D schemes, corre-
sponding to what is done direction by direction. From now on,we callx the generic
direction that we are looking at.

2.1 Cell centered upwind Finite Volume scheme for the convection
operator

We denote byv = (ρ ,ρu,ρE +P0Er,Sr) the conservative variables for the convec-
tive part of the system (1), (2), (5) and (6), andF(v) the flux matrix such that:

F(v) ·n ≡ (ρ(u ·n),ρu(u ·n)+(p+P0Er/3)n,Sr(u ·n)) , (7)

is the normal flux in the directionn ∈ S
d−1, d being the physical space dimension.

With these notations, the left-hand side of equations (1)-(2)-(5)-(6) reads:

∂v
∂ t

+∇ ·F(v) = 0. (8)

The integration of (8) over a control volumeKi, j,k = [xi,xi+1]× [y j,y j+1]× [zk,zk+1],
keeping only the terms corresponding to the derivation in the genericx-direction,
leads to a system of ordinary differential equations:

dVKi, j,k

dt
+

1
|Ki, j,k|

(

Ai+1/2, j,kφ(vi+1, j,k,vi, j,k)−Ai−1/2, j,kφ(vi, j,k,vi−1, j,k)
)

= 0, (9)

whereφ(vi+1, j,k,vi, j,k) denotes the numerical flux at the interface between volumes
Ki, j,k andKi+1, j,k. Ai+1/2, j,k is the measure of the edge located atxi+1/2 ≡

xi+xi+1
2 .

The Characteristic Flux Finite Volume (CFFV) scheme. The CFFV scheme [4]
consists in choosing, for the numerical flux in (9), the following value:

φ(v,w,n) =
F(v)+F(w)

2
·n−U (u,v,n)

F(w)−F(v)
2

·n . (10)
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Here,n= ex, for the genericx-direction.U (u,v,n) is the sign matrix of the jacobian
∂F(v)·n

∂v , in the sense that it has the same eigenvectors as, and its eigenvalues are the

signs of those of∂F(v)·n
∂v . Namely, when∂F(v)·n

∂v readsL(diag(λi))R (which is the
case for hyperbolic problems), withλi the eigenvalues,R right eigenvectors, andL
left eigenvectors such thatLR = Id, we haveU (u,v,n) = L(diag(sign(λi)))R.
The boundary conditions use the normal flux method, we refer to [6].
Eigenelements. The jacobian matrix of the normal flux (7) is found to be equalto:

∂F(v) ·n
∂v

=











0 n 0 0
Kn−u(u ·n) u⊗n− kn⊗u+(u ·n)Id kn 4

9P0Tr(1−3k)n
(K − (H + 4P0Er

3ρ ))u ·n (H + 4P0Er
3ρ )n− k(u ·n)u u ·n(k+1) 4

9P0Tr(1−3k)u ·n

−T 3
r
ρ u ·n T 3

r
ρ n 0 u ·n











.

Its eigenvalues are as follows:










λ1(v,n) = u ·n− cs ,

λ2(v,n) = · · ·= λd+2(v,n) = u ·n ,
λd+3(v,n) = u ·n+ cs .

(11)

with k = 1
ρT

(

∂ p
∂ s

)

ρ
, c2 =

(

∂ p
∂ρ

)

s
, s being the material entropy,H = E + p

ρ , K =

c2+ k(‖u‖2−H) andc2
s = c2+P0

4Er
9ρ .

The right eigenvectors associated to these eigenvalues canbe taken equal to:


































r1(v,n) = (1,u− csn,H + 4P0Er
3ρ − csu ·n, T 3

r
ρ ) ,

rd+1(v,n) = (1,u,H − c2

k ,0) ,

rd+2(v,n) = (P0Tr,P0Tru,P0Tr(H −3c2),−9
4c2) ,

rd+3(v,n) = (1,u+ csn,H + 4P0Er
3ρ + csu ·n, T 3

r
ρ ) ,

r2(v,n) = (0,n⊥
2 ,u ·n⊥

2 ), · · · ,rd(v,n) = (0,n⊥
d ,u ·n⊥

d ) .

(12)

wheren⊥
2 · · ·n⊥

d is an orthonormal basis of the hyperplane orthogonal ton.
The dual basis is then:



































ℓ1(v,n) = 1
2c2

s
(K + csu ·n,−ku− csn,k, 4

9P0Tr(1−3k)) ,

ℓd+1(v,n) = k
c2 (H −‖u‖2,u,−1, 4

9P0Tr)) ,

ℓd+2(v,n) = 4
9ρc2c2

s
(T 3

r K,−kT 3
r u,kT 3

r ,−ρc2− 4
9P0kEr) ,

ℓd+3(v,n) = 1
2c2

s
(K − csu ·n,−ku+ csn,k, 4

9P0Tr(1−3k)) ,

ℓ2(v,n) = (−u ·n⊥
2 ,n

⊥
2 ,0,0), · · · , ℓd(v,n) = (−u ·n⊥

d ,n
⊥
2 ,0,0) .

(13)

Time discretization and stability condition. We use the explicit Euler’s scheme to
discretize the time derivative in (9) and then the Courant condition for the linearized
scheme reads:
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max
i, j,k

|λ n
i, j,k|

Ai, j,k

|Ki, j,k|
∆ tn

6CFL 6 1, (14)

whereAi, j,k is either∆xi ∆y j, ∆y j ∆zk or ∆zk ∆xi depending on the direction we
solve.

2.2 Implicit centered finite volume scheme for the diffusion
equation

The diffusion part consists in the following system:

∂ρ
∂ t

= 0, (15)

∂ (ρu)
∂ t

= 0, (16)

∂ (ρE)
∂ t

=−P0σ(T 4−Er) , (17)

∂Er

∂ t
= ∇ · (κ∇Er)+σ(T 4−Er) . (18)

Since (18) is a heat equation, if we want to use reasonable time step (governed by
the Courant Friedrichs Lewy condition (14)), we have to makeuse of an implicit
time discretization.
Writing E =CvT +‖u‖2/2, and using (15) and (16), we can show that (17) reduces
to an ODE for the temperatureT :

ρCv
∂T
∂ t

=−P0σ(T 4−Er) . (19)

The scheme then reads:

ρn
i Cv

T n+1
i −T n

i

∆ tn =−P0σn
i ((T

n+1
i )4−E

n+1
r,i ) ,(20)

E
n+1
r,i −E n

r,i

∆ tn −2
κn

i+1/2

E
n+1
r,i+1−E

n+1
r,i

∆xi+1
−κn

i−1/2

E
n+1
r,i −E

n+1
r,i−1

∆xi

(∆xi +∆xi+1)
= σn

i ((T
n+1

i )4−E
n+1
r,i ) ,(21)

2
κn

i+1/2

=
1

κn
i
+

1
κn

i+1
.

It can be shown by a motonicity argument that this system has aunique solution. It
is then solved by the Newton method, mainly because of the nonlinear terms, and
the GMRES algorithm ([11]) at each Newton iteration to solvethe linear system.
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3 Numerical results

In this section, we present numerical simulations of radiative shock solutions. These
results are compared to semi-analytic solutions obtained following the method de-
scribed in [10].
We initialize a Riemann problem setting the left-state (subscript 0) toρ0 = 1,Tr0 =
1,T0 = 1,u0 = M , for a givenM (some different values are chosen for the tests),
and the right-state (subscript 1) is obtained by solving theso-called “overall jump
conditions” ([10]), and taking material and radiative temperatures equal to each
other:

ρ0u0 = ρlu1 (22)

ρ0u2
0+ p0+P0

T 4
r,0

3
= ρ1u2

1+ p1+P0
T 4

r,1

3
(23)

u0(ρ0E0+ p0+
4
3
P0T 4

r,0) = u1(ρ1E1+ p1+
4
3
P0T 4

r,1) (24)

Here,κ = 1, σ = 106 andP0 = 10−4.
We take perfect gas equation of statep = ρT

γ , with γ = 5/3.
Figure 1 shows a continuous solution computed over 128 cells. Solutions of figures
2 to 4 undergo discontinuities. For these simulations, a finer mesh is used to capture
the solutions.
Numerical and theoretical results are in good agreement. The conservative formu-
lation chosen in (6) seems to be relevant with regard to theseparticular physical
solutions.

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

 

 

rho exp
rho exact

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
1

1.01

1.02

1.03

1.04

1.05

1.06

 

 

T exp
T exact
Tr exp
Tr exact

Fig. 1 Solution for density, temperature and radiative temperature forM = 1.05. Comparison with
semi-analytic solutions. Number of cells: 128
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Fig. 2 Solution for density, temperature and radiative temperature for M = 1.2. Comparison with
semi-analytic solutions. Number of cells: 256
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Fig. 3 Solution for density, temperature and radiative temperature for M = 1.4. Comparison with
semi-analytic solutions. Number of cells: 512
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Fig. 4 Solution for density, temperature and radiative temperature for M = 3. Comparison with
semi-analytic solutions. Number of cells: 512
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4 Conclusion

As said in the introduction, this work is a first step towards the derivation of a multi
material 3D solver for multi material radiative hydrodynamics. In thispaper we have
presented our method for the single material case and shown that on physically rele-
vant non trivial solutions, our solver behaves well. The extension for multi material
flows is in progress (Chauveheid [3]). The method presented here was designed in
order to make this extension as simple as possible. In fact itonly remains to extend
the so-called condensate techniques of Braeuniget. al. [1] to radiative flows.
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